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Abstract. We numerically extract large-scale excitations above the ground state in the 3-dimensional
Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agree-
ment with the mean field picture. Of further interest are the position-space properties of these excitations.
First, our study of their topological properties show that the majority of the large-scale excitations are
sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when
the system size is increased. We conclude that either finite size effects are very large even when the spin
overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Mg Numerical simulation studies

1 Introduction

The physics of spin glasses [13] is an old yet still very
active subject of study. Much progress has been made in
understanding the nature of the low temperature phase,
but some fundamental issues remain open. Among these
is whether the free-energy landscape consists of multiple
valleys all contributing to the partition function in the
thermodynamic limit. This is what happens in mean field
theory [10], and a growing consensus is that it also arises
in finite dimensions. Perhaps the strongest numerical evi-
dence in favor of this comes from the spin overlap probabil-
ity distribution P (q) that seems to be non-trivial (see [9]
for a review).

Several other striking properties of mean field may also
hold in finite dimensions; the purpose of our work is to
test this by numerically characterizing the valley states
in the energy landscape of the 3-dimensional Edwards-
Anderson [2] (EA) spin glass model. In the mean field
picture, one expects some system-size excitations (config-
urations obtained from the ground state by flipping a finite
fraction of all the spins) to have excess energies of O(1).
Furthermore, these excitations should (i) be sponge-like
with non-zero surface to volume ratios; and (ii), be homo-
geneous on scales larger than the lattice spacing.

We first describe how we find excitations in Section 2
and then discuss in Section 3 some possible scenarios for
how replica symmetry breaking may arise in position space
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(unfortunately sometimes called real space). In Section 4
we investigate topological properties of system-size exci-
tations. Previous work [6] gave evidence that the 3-d EA
model with free boundary conditions had system-size ex-
citations whose energies were O(1). In the present work,
we use periodic boundary conditions and consider the ex-
citations’ windings around the lattice to classify them
topologically. We conclude again that it is possible to
flip a finite fraction of all the spins at an O(1) energy
cost. Furthermore, most of these excitations are sponge-
like, and our data are compatible with the possibility that
all system-size excitations are sponge-like in the thermo-
dynamic limit. Then in Section 5 we try to characterize
the geometrical properties of these excitations. We mea-
sure their surface area and correlation functions, and then
probe the distribution of their hole sizes. The data is most
naturally interpreted as indicating that there is an intrin-
sic length scale that grows with the lattice size; if this
scale grows indefinitely, then surface to volume ratios of
the excitations go to zero [6,12] asymptotically. Beyond
this scale (which is much smaller than the lattice size),
excitations may be homogeneous, in agreement with the
mean field picture. Given the small range in sizes that we
can treat, it is also possible, though less likely, that the
growth of this length scale is a finite size effect which sat-
urates for larger sizes; if this is the case, the mean field
picture holds and excitations are spongy beyond a few lat-
tice spacings; whether they are homogeneous or lumpy is
less clear as we find evidence for heterogeneities on scales
much larger than the lattice spacing.
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2 System-size excitations

2.1 Valleys

Consider a general Ising spin glass model with pairwise
couplings

H = −
∑
i<j

JijSiSj . (1)

Let N be the total number of spins. We would like to char-
acterize the energy landscape of this system through the
statistical properties of its valleys. In the infinite volume
case, one can define a valley via the configuration at its
bottom; the bottom of a valley can be defined as a min-
imum of the energy under all finite number of spin flips.
Unfortunately, this simple definition has to be modified in
finite volume; a simple yet heuristic modification consists
in imposing the energy to be a minimum under any num-
ber of spin flips fewer than vN . v ∈ [0, 1/2] is a distance
parameter (in fact it is the Hamming distance divided
by N) related to the usual spin overlap q by q = 1− 2v.
Because of the global spin flip symmetry of the Hamilto-
nian, hereafter we will force q ≥ 0.

The influence of v on the definition of the valleys is
important as all valley bottoms by construction will dif-
fer by at least vN spin flips. Suppose one had a 1-step
replica symmetry breaking with a spin overlap probability
distribution

P (q) = αδ(q) + (1− α)δ(q − q1). (2)

If q1 → 1 as the temperature goes to zero, all choices of v
satisfying v < 1/2 would recover the thermodynamically
relevant valleys asN →∞. However, in the EA model, one
expects the replica symmetry breaking to be continuous
and valleys with overlaps arbitrarily close to 1 should arise
in the zero temperature limit. Then any fixed choice of
v will eliminate some of the thermodynamically relevant
valleys. Since this effect decreases as v does, one could
simply choose a small value of v and determine empirically
the extent of the robustness in v of the analysis.

However from a numerical point of view, the main dif-
ficulty lies in finding low energy states rather than in clas-
sifying them. In fact, it is at present nearly impossible to
find the minimum number of spins to flip before the energy
of a configuration is lowered. Thus we cannot even tackle
the task of finding the best valley lying within a reduced
distance v and (v+∆v) from the ground state. Because of
this limitation, we have chosen a more hands-on approach
where we just sample low-lying excitations. Given the way
we find these configurations, we expect that nearly always
they will in fact be bottoms of valleys.

2.2 Low energy excitations

From an algorithmic point of view, the ground state con-
figuration C0 of a spin glass can be determined with a
high level of confidence as long as N is not too large. In

this work, we have used a genetic renormalization algo-
rithm [4] which allows us to go to lattices up to 123. Now
for extracting valleys or excited states, it is necessary to
first compute C0 and then to introduce a C0-dependent
constraint or perturbation to the Hamiltonian that will
lead to a modified ground state labeled C1.

We have followed the constraint-based technique pro-
posed in [6]: given the ground state, we flip the relative ori-
entation of 2 selected spins and compute the new ground
state with this constraint. A large scale excitation is ob-
tained only if its energy is smaller than that of all the
droplets surrounding either of the two selected spins. In
practice, we repeat this multiple times by randomizing the
choice of the two selected spins, obtaining a collection of
C1 excitations. Note that this method gives no control over
the number V of spins that will flip when going from C0

to C1.
For each instance (set of Jij), our numerical simula-

tion then leads to C0 (the ground state), and a number
of excitations. From this set, one can extract the config-
urations that satisfy any desired constraint. For instance,
one may impose V/N ≥ vmin when looking for excitations
of size growing linearly with N and study the energy and
position space properties of these excitations.

2.3 Two scales for finite energy excitations

Hereafter, we consider only the three-dimensional
Edwards-Anderson model with nearest-neighbor interac-
tions. The Jij are i.i.d. Gaussian random variables of zero
mean and unit variance, and we work with L×L×L cubic
lattices (L3 = N) and periodic boundary conditions.

Our procedure for sampling excitations can extract low
energy droplets, but within the mean field picture one ex-
pects to also find large-scale excitations whose size grows
linearly with N . We can test this two-scale picture by con-
sidering the probability distribution of V , the number of
spins flipped when going from the ground state to the
excited state. Suppose that the only excitations having
O(1) energy are the droplets (V finite as L → ∞) and
system-size excitations (v = V/N finite as L→∞). Then
excitations where V →∞ but v → 0 as L→∞ will have a
probability tending towards 0. Mathematically, this means
that our extraction of excitations leads to a probability
distribution for V of the form

PL(V ) −→
L→∞

αPl(V ) + (1− α)Pg(v) (3)

where Pl and Pg are the normalized probability distri-
butions associated with droplet (local) and system-size
(global) excitations.

We have measured the frequencies of “events” with V
for instance in the range [L2, 2L2] as a function of L. (We
say that we have an event in our data set whenever an
instance and our sampling procedure lead to an excita-
tion satisfying chosen criteria. Here and in the rest of our
study, we generated three excitations for each instance;
we have 10 000 instances at each value of L ≤ 10, 8 000
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at L = 11, and 5 000 at L = 12.) The frequencies de-
crease with L and quite reasonably can be extrapolated
to zero. As an example, for the interval given above, we
find the frequencies 0.520 (L = 4), 0.397 (L = 5), 0.321
(L = 6), 0.256 (L = 7), 0.232 (L = 8), 0.208 (L = 9), 0.187
(L = 10), 0.170 (L = 11), and 0.162 (L = 12). Note that
by construction, one cannot get excitations whose ener-
gies are larger than those of droplets, so all states found in
our sampling necessarily have O(1) energies. This analysis
then confirms the two-scale form given in equation (3).

3 Spin glass scenarios in finite dimensions

3.1 Length scales for self-averaging

Consider first the energy of system-size excitations. In the
mean field picture (as motivated by the properties of the
SK model) we expect to be able to find a C1 (for any choice
of vmin) with a finite probability, and that its energy will
be O(1), i.e., finite when N →∞. On the contrary, in the
droplet [3] and scaling [1] pictures, the characteristic en-
ergy of large scale excitations grows as a power of L. In [5]
it was argued that one should distinguish the energy scal-
ing of large-scale excitations from that of droplets in an
infinite system; it is then necessary to introduce two ex-
ponents, θg (g for global) and θl (l for local); for instance
the lowest system-size excitations have energies scaling as
Lθg . Section 4.2 will lead us to the conclusion that θg ≈ 0.
Extrapolating to finite temperature as is now commonly
done [8], this indicates that replica symmetry is broken
in the three-dimensional Edwards-Anderson model, i.e.,
the overlap probability distribution P (q) is non-trivial in
agreement with many previous studies (see [9] for a re-
view).

Consider now the position-space characteristics of
these large scale excitations. We are concerned here with
the properties of the (connected) cluster of spins that are
flipped when comparing to the ground state; we shall use
the term excitation when referring to this cluster in addi-
tion to the configuration C1 itself. By definition, the sizes
of these clusters are O(N) (those are the events we fo-
cus upon). Of major interest is to understand whether
these excitations are topologically non-trivial or not, ho-
mogeneous or inhomogeneous, fractal, multi-fractal, etc.
To classify the different possibilities, we ask how the prop-
erties of the clusters depend on the scale of observation
and on L, the size of the lattice. Clearly there are many
observables that can be considered; to stay as simple as
possible this discussion will focus on the cluster’s density
or equivalently on its local overlap as a function of the
scale of observation.

Consider an M×M×M window or box and let qM be
the overlap between C0 and C1 restricted to this box. (The
cluster’s density in the box is just (1− qM)/2.) Obviously
qM fluctuates no matter how large M is as the global
overlap q itself is not self-averaging. But if we fix q, at
what scale in M do the fluctuations in qM disappear, or
equivalently, what is the typical fluctuation of qM as a
function of the observation scale M? Let PM,L(qM ) be the

disorder-averaged distribution of qM ; its mean is q and its
variance will decrease to zero as M approaches L. We can
distinguish different scenarios according to the behavior
of this distribution. We can expect and will assume that
we have pointwise convergence in the infinite volume, i.e.,
that at fixed M

PM,L(qM ) −→
L→∞

PM (qM ). (4)

(Note that the global overlap between the two configura-
tions must be fixed, and so this distribution depends im-
plicitly on q.) It is possible that in fact this convergence
will be uniform in the mathematical sense, that is one con-
verges to the same function even if M varies with L. We
then say that the limit is “regular”, leading to “regular”
scenarios. The other scenarios will be non-regular, i.e.,
the convergence will be non-uniform. The key property
that distinguishes these scenarios is whether or not qM
becomes self-averaging at a fixed (L-independent) scale.
In the regular scenarios, the fluctuations in qM disappear
as M grows, so that the scale for self-averaging is a few
(or many) times the lattice spacing. In the non-regular
scenarios, PM (qM ) will not tend towards a delta function
as M → ∞; fluctuations will go to zero only when M is
sufficiently big compared to an L-dependent scale.

In physical terms, the regular scenarios have no hidden
scale; as soon as one takes large enough windows, one has
convergence of qM towards q in the probabilistic sense. As
a consequence, once the global overlap q has been fixed,
there are essentially no significant fluctuations in density
down to a few lattice spacings, PM,L being very peaked
about its mean. qM is then self-averaging when q is fixed
as soon as M becomes large compared to 1. On the con-
trary, in the non-regular scenarios, PM,L does not become
peaked about its mean. For qM to become self-averaging,
one needs to go out to an L-dependent scale, for instance
M ≈ Lγ . A simple system that realizes this scenario is a
ferro-magnet with anti-periodic boundary conditions; then
γ = 1, and for scales M � L, PM,L has a two peak struc-
ture; qM is not self-averaging on any scale smaller than L.

Our presentation has concentrated on the behavior of
density fluctuations on different scales, but it generalizes
in a straightforward manner to other observables (surface
of the clusters, number of handles, etc.). Since different
observables may become self-averaging on different scales,
it is best to keep in mind that the complete picture may
be more complicated than that obtained by looking at
density fluctuations alone.

3.2 Two scenarios with uniform convergence

With uniform convergence, the limit L → ∞ in equa-
tion (4) need not be restricted to M fixed; any M (de-
pendent or not on L) will lead to the value given by the
pointwise limit. We can say that there is a smooth or reg-
ular infinite volume limit on all scales simultaneously.

Our classification of regular scenarios is based on the
way PM converges towards a (single!) delta function as
M → ∞. Zooming into the region around its peak,
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one may expect PM to have a limiting shape if we rescale
the x-axis so that the full-width half-max stays constant.
If the limiting shape, P ∗, decays quickly so all moments
exist, then fluctuations much larger than typical ones will
be very rare and we will say that the system is homoge-
neous. If, on the contrary, P ∗ is a broad distribution, then
rare events can dominate the mean square of density fluc-
tuations, and we will say that the system is heterogeneous.
Let us give physical pictures of these two cases.

Regular homogeneous sponges

Consider first the regular homogeneous scenario. A well
known system having this behavior is the Ising model near
its Curie point. Long wave-length fluctuations occur and
decrease in intensity with wave-length. The dependence
of this intensity on the scale (M) is not the point here,
rather we focus on the distribution of the fluctuations at
given M . In this physical system, fluctuation intensities
much larger than the typical ones are very rare, the prob-
ability distribution P ∗ decays faster than any power. For
our spin glass problem, we will have the regular homo-
geneous scenario if the density fluctuations of the clusters
have this same property as long as we keep the global over-
lap q fixed. In a pictorial language, the clusters associated
with an excitation will be rather random at scales larger
than the lattice spacing, and can be thought of as homoge-
neous sponges characterized mainly by their density v and
their effective mesh spacing `c. The terminology “sponge”
comes from the fact that such objects are full of handles
and are bicontinuous: they and their complement are con-
nected, and the local density beyond the scale `c is nearly
uniform. This length `c, called the cohesive length of the
sponge [5], is just a few lattice spacings. (Since the con-
vergence is uniform, the lattice spacing is the only scale,
`c cannot diverge with L and it is unnatural for it to be
many lattice spacings.)

Regular inhomogeneous sponges

A different scenario is obtained if we give up the homo-
geneity hypothesis. We still maintain uniform convergence
of observables towards their large L limit, but now we as-
sume that the density fluctuations arise not via low in-
tensity modes but via holes in the sponges. To use the
picture of Villain, we have something like a swiss cheese,
except that the starting point is a sponge rather than the
whole lattice, and from this we take out (or put in) blocks
of contiguous spins. The resulting object is lumpy on all
finite scales and the distribution of hole sizes and thus P ∗
has long tails. But as long as large holes are sufficiently
rare, we can maintain the uniform convergence so that this
lumpy system has no characteristic scale other than the
lattice spacing.

The mean field picture

In any uniform convergence or regular scenarios, a finite
fraction of the sites in the cluster are at a finite distance

from the cluster’s complement; thus the surface area of
the cluster grows as L3, and the link overlap qL cannot
go to 1 as L → ∞; P (q) and P (ql) are both non-trivial,
as in the SK model. Within mean field theory there is no
intrinsic scale for self-averaging that grows with L, thereby
suggesting that all observables converge uniformly to their
limits; because of that, we shall hereafter simply say that
the “mean field picture” corresponds to having uniform
convergence of observables.

3.3 Scenarios without uniform convergence

In this class of scenarios, the L→∞ limit does not com-
mute with the scale of observation (M) going to infinity.
In other words, there is at least one L-dependent scale
that affects the large L limit [8]. The simplest such case
has a single scale (also called `c) such that the observ-
able under consideration (for instance the local density)
is self-averaging beyond `c and has a non trivial distribu-
tion below. When L is finite but large, PM,L(qM ) can be
approximated by considering its difference with PM (qM );
it is natural to expect this difference to depend only on
the ratio M/`c. We can then write

PM,L(qM ) ≈
L→∞

PM (qM ) +A1f
1
M/`c

(qM ). (5)

More generally, if there were many characteristic lengths
`ic, we could construct such an expression recursively by
imposing the condition f i0 = 0; the first term is always
the pointwise limit, and the terms following give the cor-
rection associated with passing through the scale `ic. Note
that once a scale M � `kc is reached where PM,L is a
single delta function, then for observables such as density
that involve additive quantities no further change in the
distribution is possible.

In their full generality, these scenarios with multiple
scales are quite complicated. Let us expose a few possibil-
ities in the simplest case where there is a single `c. That
scale must grow indefinitely with L, for instance as a power
of L. Suppose now that PM (qM ) converges at large M to
two delta function peaks centered at qmin and qmax, while
if we take M � `c PM,L(qM ) converges to the single delta
function peak at q (recall that beyond the scale `c, qM be-
comes self-averaging and thus must equal the global over-
lap q). We have two simple candidate scenarios depending
on qmin and qmax.

Fat sponges

If qmin = 0 and qmax = 1, then at finite scales one never
sees the surface of the cluster, while at scales larger than
`c the cluster is homogeneous so should resemble a sponge.
(For this last property we assume `c � L.) We call this
case the “fat sponge” scenario as the clusters are just
sponges whose characteristic mesh spacing is `c. Indeed,
up to a dilation of the clusters, everything looks like the
regular homogeneous scenario except that `c(L) → ∞ in
the infinite volume limit.
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We can consider several properties of such sponges.
First, since the surface of the cluster does not grow as fast
as its volume, the standard link overlap converges to a
delta function at ql = 1, and we have a scenario that real-
izes the TNT [6,12] (trivial ql, non-trivial q) behavior. Sec-
ond, the nature of the cluster’s surface on scales smaller
than `c will play an important role. The surface is un-
likely to be smooth as in the ferromagnetic case; instead,
it might be continuum fractal, having a fractal dimension
2 < df < 3. But once one reaches the scale `c, everything
becomes homogeneous as qM becomes self-averaging.

Hierarchical sponges

Consider now the possibility that qmin 6= 0 and qmax 6= 1.
Then below the scale `c one is in either of two phases dif-
fering in their density, but neither of these two phases
resembles the ground state locally. In fact these two
phases could resemble sponges, differing mainly by their
densities. We will call this a “hierarchical sponge” scenario
because one can produce such clusters by hierarchically
applying sponge excitations to the ground state. Indeed,
start with the ground state and create a fat sponge by
flipping a spongy cluster whose characteristic mesh spac-
ing is `c. Then if we take that state and flip a spongy
cluster whose characteristic mesh spacing is O(1), we find
that there are locally only two densities and we obtain a
two-step hierarchical sponge. (Naturally this construction
can be generalized to any number of levels.)

Fractals

Consider the fat sponge scenario but take `c to grow lin-
early with L. Then there is no regime where M � `c and
the cluster never becomes homogeneous. There is thus no
reason to expect it to be sponge-like (although it may with
a finite probability wrap around the lattice and have some
of the topological properties that sponges have). The main
motivation for this scenario is that it is what arises in a
disordered ferro-magnet. Its characteristic is that qM is
not self-averaging until M → L and we can expect to get
non-trivial distributions for observables such as qM when
M is a finite fraction of L.

Overall, we see that there is a great diversity of possible
scenarios. Ideally our goal would be to test for the uniform
or not convergence of observables as L → ∞. However,
from the point of view of the mean field picture, we shall be
plagued by finite size effects, whereas from non-mean field
viewpoints the results will be encouraging but still a bit
muddled. The main conclusion will be that `c grows with
L, i.e., the clusters coarsen as L grows. This coarsening
may stop as in the mean field scenarios, or we may be
seeing evidence in favor of the fat sponge scenario. But
certainly `c does not grow linearly with L, ruling out the
fractal scenario having heterogeneities on the scale L.

4 Topological properties

4.1 Classification by windings

Suppose we consider all events in our data set with v =
V/N in a given window; we then find that the relative
frequency of these events decreases as L increases. Within
the droplet model, this is expected, and in fact the fre-
quency should decrease to zero as L−θ. On the contrary,
in the mean field picture, that frequency should go to a
constant non-zero value, and its decrease is interpreted
as a finite size effect. Because θ is quite small, we cannot
use that data alone to discriminate between these two pic-
tures. Thus for each excitation we will also look at its topo-
logical properties as defined from the connected cluster of
spins that are flipped in that excitation. Our motivation is
if that there are system-size excitations of low energy, we
expect them to be topologically non-trivial, and so a joint
study of topology and v may allow one to extrapolate to
L→∞ cleanly. Indeed, if the frequency of these types of
events grows rather than diminishes as L increases, it be-
comes plausible that they survive in the thermodynamic
limit.

Clearly a complete topological characterization of the
clusters is not necessary. With free boundary conditions,
it was possible [6] to limit oneself to finding out whether
the cluster and its complement touched the different faces
of the cube. Here, since we insist on maintaining periodic
boundary conditions, we generalize that criterion by con-
sidering the winding properties of the cluster in the cube.
Given a cluster, we determine whether there are paths on
that cluster (going from site to nearest neighboring site)
that wind around in any of the three directions (x, y, z)
of the cubic lattice. From this, we define three classes of
clusters as follows. A cluster (and thus the event and ex-
citation) belongs to the first class if it and its complement
have a non-trivial winding in all 3 directions of the cube.
A cluster belongs to the third class if it has no windings
at all. Finally, the second class consists of all other events.
We will refer to events in the first class as sponges for obvi-
ous reasons, while events in the third class will be referred
to as droplets.

4.2 Sponges with O(1) energies

For each excitation obtained from an instance, we com-
pute its overlap q with the ground state or equivalently
its v, and determine to which topological class it belongs.
Figure 1 gives the probability density of v for each of the
three classes defined. The data represented is for 10 000
different instances with L = 10, and for each instance
we generated 3 excitations. The droplets (events in the
third class) create a peak at small v while the other two
classes are responsible for the rest of the distribution. Now
to understand how these distributions evolve with L, we
consider the total contribution of the different classes, in-
tegrated over v. From Table 1 we see that sponge (first
class) events have an increasing frequency with L and so
can reasonably be extrapolated to constitute a non-zero
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Fig. 1. Distribution of event sizes for L = 10, decomposed
according to winding class type.

Table 1. Fraction of sponges and droplets.

Size Sponges Droplets
4 0.230(3) 0.251(3)
5 0.253(3) 0.306(3)
6 0.271(3) 0.346(3)
7 0.284(3) 0.374(3)
8 0.290(3) 0.389(3)
9 0.300(3) 0.399(3)
10 0.304(3) 0.412(3)
11 0.302(4) 0.421(4)
12 0.310(5) 0.423(5)

fraction in the large volume limit. This had also already
been the case with free boundary conditions [6].

We feel that these data provide strong evidence that
there are system-size excitations with O(1) energies. Ex-
trapolating to finite temperature, this leads to replica
symmetry breaking in the 3-d Edwards-Anderson model.
Furthermore, because of the constraints built into the first
class, these excitations span the whole system. From a di-
rect visualisation of the clusters, we also see that their
topology is highly non-trivial: they resemble sponges in
that they have handles everywhere on a scale of a few
lattice spacings. They are thus both space spanning (ex-
tending throughout the whole system) and space filling,
at least on the scale of L.

4.3 Are all valleys sponge-like?

Given the data in Table 1, one can ask whether all low-
energy system-size excitations asymptotically fall into the
first class. In particular, if a uniform convergence scenario
of spin glasses is correct, one expects to find only sponges
in the thermodynamic limit as argued in [5], so that the
second (intermediate) class should disappear when L→∞.
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Fig. 2. Probability density of event sizes for L = 4, 6, 8, 12
from right to left; only the contribution of class 2 events are
shown.

To see whether this is the case, we have studied the
probability density of v as a function of L, decomposed ac-
cording to the topological classes. The results for class 2
are displayed in Figure 2. It shows that as L increases,
the curves shift towards smaller v while the fraction of all
events falling into class 2 (given by the area under each
curve) decreases. That this fraction decreases is necessar-
ily the case as we saw that the fractions of the other two
classes grow with L. Can we extrapolate this fraction of
class 2 events to zero as L → ∞? We have performed
fits of this fraction to the functions a + b/L + c/L2 and
a + b/Lc; both fits give reasonable χ2s and lead to val-
ues for a that are in reasonable agreement: 0.18(0.01) and
0.17(0.01). Taken at face value, these extrapolations indi-
cate that the uniform scenarios are not correct. However,
we believe that regardless of what the correct scenario is,
finite size effects are subtle for class 2 events. To justify
this, let us look again at the data.

In Figure 3 we show the fraction of class 2 events as a
function of 1/L (top curve). Because of the positive cur-
vature of this data, it seems likely that this class survives
in the thermodynamic limit, confirming the conclusion
drawn from the fits. But as argued in [5], it is difficult to
create sponges in finite dimensions when L is smaller than
a typical “cohesion” length `c that may be substantially
bigger than one lattice spacing, especially if the dimension
is not large. This effect should be much more severe for
small v; indeed in that limit, creating a spongy yet con-
nected cluster requires the sponge to be very “thin”, most
of its sites being at its surface. The energy of such a sponge
is likely to be high, and so our procedure for generating
large scale excitations should not pick them up. We have
explored the validity of this point of view by considering
the fraction of class 2 events subject to a further selec-
tion in v. The three curves of Figure 3 are associated with
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Fig. 3. Fraction of class 2 events and constant plus power fits.
From top to bottom: case of v > 0, v > 0.2, and v > 0.25.

the events satisfying v > 0, v > 0.2, and v > 0.25 (from
top to bottom). We see that the fraction of these last
events cannot be extrapolated to positive values, as con-
firmed by detailed fits. In fact, when we look at Figure 2,
we can now reasonably assume that the curves all go to
zero when L grows, but the smaller v is, the later the
asymptotic behavior sets in. More convincing evidence of
this is beyond the scope of our data, but we hope to have
made the case that our results are not incompatible with
class 2 events disappearing altogether in the large L limit.

In conclusion, great care is needed when performing
extrapolations to large L because finite size effects are
subtle when v is small. Therefore, in what follows, we will
focus exclusively on the region near v = 1/2 (q = 0). If we
are to provide any evidence that there is a growing length
scale, it is only at q ≈ 0 that such evidence can be solid.

5 Geometrical properties

We now move on to geometrical properties of low-energy
system-size excitations: link overlaps, correlation func-
tions, window overlaps, etc. From these measurements,
we hope to test whether or not there is a growing in-
trinsic scale `c, and to thereby weight the balance in favor
of some of the scenarios. Since spin glasses have resisted
simple solutions, we do not expect the reader to find that
any scenario comes out a clear winner but we do hope to
convince her or him that the clusters coarsen significantly
as L grows. Whether or not this coarsening continues to
infinite sizes may be of fundamental importance; however,
if it turns out that the growth is very slow, it should be
of limited experimental relevance.

5.1 Mean link overlaps

We begin by considering the link overlap between the
ground state and an excited state:

ql =
1

3L3

∑
i,µ̂

S0(i)S1(i)S0(i+ µ̂)S1(i+ µ̂). (6)
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Fig. 4. Link overlap distributions for L = 4, 6, 8, 12. The data
are for all events with 0 ≤ q ≤ 0.1.

We will take the surface S of the corresponding cluster
to be the number of links that connect the cluster to its
complement. Then we have ql = 1 − 2S/3L3. One of the
main issues in this section is whether ql → 1 at large L,
that is we want to know whether the system-size clusters
have a surface to volume ratio that goes to zero at large L.

In the SK model, ql is a deterministic function of
the spin overlap q in the thermodynamic limit: ql = q2.
An analogous deterministic relation will be satisfied in
any scenario that is homogeneous on the length scale
L. We can see whether this is the case in our system
by considering the probability distribution of ql at fixed
q; Figure 4 shows this distribution for different L values
when 0 < q < 0.1. (Note that for such small values of q,
essentially all the excitations are sponge-like, i.e., fall into
class 1 except for the smallest Ls, and so a nearly identical
plot is obtained if one restricts oneself to class 1 events.)
Clearly the distributions are becoming more narrow with
increasing L while drifting to the right. So we will look at
both the mean and variance of these distributions.

In the uniform convergence scenarios the mean of these
curves should settle at a ql < 1 as L→∞ and so the drift
is a finite size effect. On the contrary, in the fat sponge
and fractal scenarios, the limiting ql is equal to 1 and the
drift is the signal that `c is increasing with L. (In the
hierarchical sponge scenario, ql should again converge to
a value strictly smaller than 1.)

In geometrical terms, having ql → 1 means that the
surface to volume ratios of the clusters go to zero at large
L. Such a property was referred to as TNT in [6] as the link
overlap ql then has a trivial probability distribution [12]
(it is infinitely narrow and localized at ql = 1) while the
distribution of the spin overlap q remains non-trivial.

We can try to discriminate between such different sce-
narios by performing fits, but it is necessary to parame-
terize the dependence of the mean on L for each scenario.
Suppose that the asymptotic behavior of a quantity is Lα;
then we postulate that the finite size effects are multi-
plicative, with a finite size correction given by a function
f(1/L) where the argument is simply the ratio of the two
scales of the problem, i.e., the lattice spacing and the lat-
tice size. It is natural to assume that f can be Taylor
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Fig. 5. Mean link overlap for excitations with 0 < q < 0.1.
Shown are fits for constant and power law asymptotics.

expanded for small arguments, so we shall parameterize
all our finite size effects by polynomials in 1/L.

In TNT scenarios, one expects 〈ql〉 − 1 to go to zero
as an inverse power of L, whereas in the scenarios with
uniform convergence 〈ql〉 − 1 goes to a strictly positive
constant. We have performed fits for these two types of
scaling behavior. (We have also considered the possibility
that 〈ql〉−1 vanishes as an inverse power of the logarithm
of L, but the results are not convincing.) Consider first
the fits having two free parameters. There is a linear fit in
1/L, and a pure power fit, 〈ql〉 − 1 = a/Lγ, as shown in
Figure 5. We do not include the L = 4 data when fitting,
and obtain χ2s of 67 and 19.5 for the two fits. (If instead
we do leave the point at L = 4, the χ2s are increased to 149
and 49.) It seems plausible that we need to allow for more
parameters and finite size corrections. So we allow now
for three fitting parameters. The new χ2s are 7.5 and 6.3.
This same pattern is repeated when one goes on to 4 free
parameters. Certainly the case of a power law in L leads to
the best fits and so is favored by the data. However, this
advantage is only significant for the two parameter fits.
(Note that when repeating all the fits after restricting the
events to belong the sponge class, we find similar results.)
Since it is quite possible that our parameterizations do
not capture correctly the finite size effects, we cannot rule
out the scenarios where 〈ql〉 does not go to 1. Even so, it
is worrisome that the asymptotic 〈ql〉 values predicted by
such scenarios drift with the number of parameters in the
fits: we obtain 〈ql(L =∞)〉 = 0.68, 0.72, and 0.75 for the
fits with 2, 3, and 4 parameters.

To have a completely convincing test, we would need
to have a range in L where only one of the fits gave χ2s
that were close to the theoretically expected value. As
can be seen in the figure, such a situation may not be so
far: it might be enough to go to sizes up to L = 16 to
finally obtain a clear cut discrimination of the different
scenarios. In the mean time, we shall simply say that the
TNT scenarios are slightly preferred.

Regardless of the scenario favored by the reader, per-
haps the most striking point made here is that 〈ql〉 un-
deniably increases for the currently accessible values of
L, and that this is most simply interpreted by having `c

growing with L. In models without geometry `c is small
(for instance in the SK it is 1) whereas it seems to be at
least 4 here even if we stick to the uniform convergence
scenarios and identify `c with 1/(1− ql).

5.2 Variance of link overlaps

We come back now to the way the distribution of ql be-
comes narrow. If the lattice spacing is the only relevant
scale as in the homogeneous sponge scenario, we can ex-
pect P (ql) to converge to a delta function following the
central limit theorem scaling law:

〈(ql − 〈ql〉)2〉 ≈ CL−3. (7)

However the data very clearly shows that 〈(ql−〈ql〉)2〉×L3

grows tremendously with L and we see no way this can
be compatible with finite size corrections to a constant
asymptotic value. On the contrary, a fit to a power law
looks sensible and we find that 〈(ql−〈ql〉)2〉×L1.1 has no
trend with L. This value for the exponent of the scaling of
the variance of ql is not very different from the value found
by Marinari and Parisi [7] who extracted excitations in a
very different way. This scaling suggests to us that there is
an underlying length `c that diverges with L and that the
density of the cluster’s interface fluctuates on scales much
larger than the lattice spacing. We also have measured
the kurtosis of the distribution; we find that it does not
decrease with L, showing explicitly that there is no central
limit behavior. Overall, we feel that these results rule out
the homogeneous sponge scenario for which the central
limit theorem should hold. However we have nothing to
say concerning the heterogeneous sponge scenario which
can very well violate the central limit theorem.

5.3 Spin overlap correlation functions

Now we focus on the two-point correlation function de-
fined by:

G(L, r) = 〈S0(i)S1(i)S0(i+ r)S1(i+ r)〉. (8)

We present in Figure 6 this correlation function, as usual
for events with 0 < q < 0.1. We see again that finite size
effects are very severe, making it quite difficult to guess
what is the limiting curve when L → ∞. In the regular
scenarios, one expects G(r, L) to converge to a limiting
curve with for instance 1/L corrections, just as we saw
for the mean link overlaps. For the TNT scenarios, the
limiting curve is G(r, L→∞) = 1, and we can follow the
discussion of finite size effects for 〈ql〉 to motivate those
of G(r, L). (Note in particular that G(1, L) = ql.) Since
G(r, L) probes properties at distance r, we will postulate
in the fat sponge scenario that the finite size effects can
be parameterized through

G(r, L) = 1−A(r)L−δ(1 +
B1(r)
L

+ · · · ) (9)
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Fig. 6. Spin overlap correlation function at 0 < q < 0.1 for
L = 4, 6, 8, 12 (bottom to top).

in the region r � `c, while G(r, L) should be constant and
equal to q2 for r� `c.

We have performed these fits. Since it was possible to
fit reasonably well G(1, L) to a constant different from 1
plus 1/L corrections, (cf. the previous section), it will be
no surprise to find out that this remains true of G(2, L).
The difference between the r = 1 and r = 2 cases is that
now the quality of the fits with G(r, L = ∞) equal to 1
or less than 1 are similar, no scenario is favored. We have
also tried to see whether a simple scaling law of the type
G(r, l) = G(r/Lδ) might hold, but given the small useful
range in r, no solid conclusion can be drawn. However,
there should be a large usable range in r if we assume
G(r, l) = G(r/L) as in the fractal scenario. When we try
that rescaling the data do not superpose at all: the large L
curves that were above are now far below the others. There
seems no way to avoid the conclusion that the correlation
function data unambiguously rule out fractal scenario.

5.4 Window overlaps

Now consider the probability P (M,L) that a cubic box of
size M is entirely contained either in the cluster or in its
complement. P (M,L) has been studied in previous work,
in particular by Palassini and Young [11]. Figure 7 gives
these probabilities for our excitations at M = 2 and 3
for the window 0 < q < 0.1. In any TNT scenario and
in particular in the fat sponge scenario, P (M,L) → 1 as
L→∞ at any fixed M . We have performed the fits to this
quantity in the same way as previously. The mean field
picture is associated with polynomial fits in 1/L, while in
the fat sponge scenario we take

P (M,L) = 1−A(M)L−δ(1 +
B1(M)
L

+ · · · ) (10)
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Fig. 7. Probability and fits that an M3 box does not cross
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Fig. 8. The cross-sections of our four types of tubes.

For M = 2, we find the following χ2s for these two pic-
tures: 311 and 10.6 for two free parameters, 14.4 and 7.5
for three free parameters, and 8.4 and 7.2 for four free pa-
rameters. (The same pattern transpires if we include the
L = 4 data.) So here we seem to find more convincing ev-
idence that the fat sponge scenario is significantly favored
over the uniform convergence scenarios. The same study
at M = 3 leads to the same conclusion, i.e., that the fat
sponge scenario is favored.

5.5 Tube observables

In the context of the fat sponge scenario with a length
scale `c, we may expect P (M,L) to be a function only of
the reduced variable M/`c(L). Unfortunately, the usable
range in M is small (the data at M = 4 is not exploitable),
and so the scaling cannot be reliably tested. This leads us
to consider other observables that may have a larger useful
range.

Rather than increase the size of the window in all three
directions, we increase it in just one direction; because
of this, we refer to these windows as “tubes”. We have
investigated four different types of cross-sections for these
tubes, as displayed in Figure 8. Essentially, we use these
objects to probe the size of holes in the clusters as follows.
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Fig. 9. Mean tube length for events with 0 < q < 0.1 as a
function of L.

Given a tube type and a lattice site, we ask for the length
of the longest tube along the x-axis that passes through
this site and is entirely contained in the cluster (or in
its complement). We compute this length for each site of
the lattice and for the four different tube types. Then we
extract the mean length found, averaged over lattice sites
and over the disorder.

In Figure 9 we see that the mean tube length in-
creases very clearly as L increases, even for events with
0 < q < 0.1. Within the fat sponge scenario, this is sim-
ply the reflection of the growth of `c with L. Is such a
behavior compatible with the heterogeneous sponge sce-
nario (having uniform convergence)? If the distribution
of hole sizes is broad in heterogeneous sponges, the first
moment may no longer be finite, leading to a divergence
in the mean tube length. It is thus necessary to look di-
rectly at the probability distribution of these lengths. In
Figure 10 we show the distribution of the tube lengths
for tubes of type 2. (Tubes of type 1 show a much more
severe drift with L, and the other tube types are quite
similar to the one displayed.) We see that as L increases,
the curves shift to the right while the values at small l
decrease. In the uniform convergence scenarios, these dis-
tributions have a limiting shape, while in the fat sponge
scenario for instance, the values at any finite l will go to
zero. We have fitted the first three values (l = 0, 1, 2) in
the figure as we have previously, i.e., to a finite or null
asymptote, using the data with L > 5. The fits at l = 0
have the same kind of behavior we saw before, i.e., the
best fit is the extrapolation to zero, but the pure 1/L fit
should not be excluded. (For two parameter fits, the χ2s
are 27 for a non-zero extrapolation and 8.6 for the zero
extrapolation; for the 3 and 4 parameter fits the zero ex-
trapolations remain the best but are only marginally bet-
ter than the ones for non-zero extrapolation.) For l = 1
and 2, there is no trend, but the extrapolated values are
always very small, being below 0.03 and often ten times
smaller than that. This result could have been guessed at
from looking at Figure 10. Naturally, given the form of
these histograms, it is much too difficult to extrapolate
the data for still larger values of l, but nevertheless our
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Fig. 10. Histogram of type 2 tube lengths for events with
0 < q < 0.1, for 4 ≤ L ≤ 12.

Table 2. Fraction of excitations having a spanning tube.

L Tube 2 Tube 3 Tube 4
4 0.137(7) 0.006(2) 0.008(2)
5 0.22(1) 0.028(4) 0.020(3)
6 0.32(1) 0.080(6) 0.043(5)
7 0.38(1) 0.119(8) 0.080(6)
8 0.41(1) 0.15(1) 0.11(1)
9 0.46(1) 0.18(1) 0.13(1)
10 0.47(1) 0.22(1) 0.17(1)
11 0.48(1) 0.25(1) 0.20(1)
12 0.51(2) 0.28(2) 0.24(2)

conclusion is that the data do not support a point-wise
convergence to a non-trivial distribution. At face value,
this means that the uniform convergence scenarios are in-
correct.

We can also look at the tail of the distribution. If
L � `c, we can expect the tail of the histogram to fall
to zero rather rapidly with L. In practice though, we find
that the histogram at l = L grows with L for the tube
types 3 and 4 for all values explored, while it first grows
then decreases very slowly for type 2 tubes. At the very
least, this is totally unexpected within the uniform con-
vergence scenarios. Because of this, we have investigated
the probability that a cluster has somewhere a tube of
maximum length (that is of length L, the tube spanning
the whole system along the x-direction). We find that for
tubes of the first type, 99% of the instances have at least
one spanning tube, and that this ratio does not seem to
depend on L. For the other tube types, we have collected
the ratios in Table 2. One sees that the ratios all increase
with L. If we take into account the data for tubes of the
first type, we are lead to extrapolate these ratios to fi-
nite quantities, distinct from 0 and 1. This goes strongly
against the idea that the clusters are homogeneous be-
yond `c � L. Indeed, in such a picture, the probability
of having a tube span the whole system decreases expo-
nentially. Here we need the decrease to be power-like so it
can be compensated by the L2 places where the tube can
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be located. Thus we are driven to a rather heterogeneous
picture (in the sense discussed in Sect. 3.2) where large
fluctuations on scales larger than `c are possible, being
suppressed by powers of L rather than exponentially in
L/`c.

6 Conclusions

The only truly compelling property that emerges from this
study is that the clusters coarsen as L grows. Naturally,
this can be interpreted within the uniform scenarios as
being a finite size effect; the issue is whether this is be-
lievable given the size of this effect. In essentially all the
measurements we have made, the fat sponge type picture
was favored over the homogeneous sponge scenario by a
detailed χ2 analysis. Furthermore as we saw from the tube
observables, heterogeneities are large, so a scenario that
is homogeneous on the scale of the lattice spacing seems
ruled out. (We also saw for instance from the measure-
ments of G(r, L) that the scenarios where L is the only
relevant scale are not supported by the data.) So our con-
clusion is mainly that the scenarios at the end of the spec-
trum (homogenous regular sponge and fractal or droplet-
like model) are no longer compelling. We are thus left
with uniform convergence scenarios having large hetero-
geneities, and scenarios with at least one scale `c growing
with L. In the first case, we have large finite size correc-
tions because of the heterogeneities, while in the second
we can realize the TNT scenario where ql has a trivial
distribution in the thermodynamic limit.

The difficulty of the problem should be all the more
evident from the focus of our study: essentially all of our
measurements were for the region q ≈ 0. Obviously there
is room for much more heterogeneities when q is larger.
Nevertheless we hope to have shed new light on the prob-
lem of replica symmetry breaking in finite dimensional
systems. And, as we have pointed out before, a convinc-
ing test of the major scenarios may not be so far off: we
believe it is enough to go to slightly larger systems before
the tests will become clear-cut to a vast majority.
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